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Chapter 1

Introduction

This paper extends "the" classical Runge-Kutta inte-

grator of Kutta (1901) to a Rosenbrock (1963) inte-

grator. This extension is analogous to introducing an
additional term into a series solution to improve its

accuracy. The result is a numerical integration pro-
cedure applicable to stiff and nonstiff problems alike;

whereas the classical integrator of Kutta is applicable

only to nonstiff problems.

The paper begins with a discussion of the periph-

eral procedures that must accompany an integra-

tor in order to construct a robust integration algo-

rithm. This discussion includes a startup procedure,

the ability to estimate error and to control it, and a
scheme for recording the results. The startup proce-

dure determines the initial step size by obtaining a

Taylor series expansion of the solution in the neigh-
borhood of the initial state. The error estimate used

permits a ratio of absolute to relative error measures.

A self-adaptive time stepper is used to control this

error. The controller employed was derived from

control theory by Gustafsson et al. (1988). It is a

proportional integral controller with antiwindup; in
other words, the controller has a proportional feed-

back mechanism for maintaining algorithm stability.

This mechanism permits the user to obtain any den-

sity of output without impairing the efficiency of the

integrator and its controller. The local, Hermite, in-

terpolation procedure of Shampine (1985) is used.

An integrator must accompany these peripheral

procedures to complete the algorithm. The next topic
of discussion is the basic mathematical structure of

explicit Runge-Kutta methods. Specifically, "the"

classic Runge-Kutta integrator originally derived by

Kutta (1901) is presented. A fifth stage is added to
his method, producing a first-same-as-last (FSAL) in-

tegrator with an embedded solution. This addition
is done to provide the error estimator with two ap-

proximate solutions of different accuracies and is de-

signed so as to provide this information as efficiently

as possible.

Theoretically, a Rosenbrock (1963) integrator is an

extension to Runge-Kutta integrators, yet no Rosen-

brock integrator known to the authors has had its co-
efficients derived with this fact in mind. Herein, we

take those coefficients common to both Runge-Kutta

and Rosenbrock integrators and fix them to the val-

ues of "the" classic integrator. The order conditions

of Wolfbrandt (1977) are then applied to solve for

the remaining coefficients unique to Rosenbrock inte-

grators. The result is a semi-implicit integrator with

superior capabilities. The derived formulae can be en-
coded efficiently by introducing a transformation into

the set of equations that constitute a Rosenbrock-
Wolfbrandt integrator.

With a compatible pair of Runge-Kutta and Rosen-

brock integrators, one can devise a scheme to switch
from one to the other when the solution leaves a stiff

domain and enters a nonstiff domain, or vice versa,

thereby providing an algorithm with optimum effi-

ciency. This scheme requires a cheap means of assess-

ing whether the solution is stiff or not at its current

position in state space. An algorithm is presented
that attempts to accomplish this goal. It is not as

rigorously based as one would like, but it does func-

tion properly.

Now that these integrators have been encapsulated

into an algorithm for robust and efficient integration,

it is time to test the product to determine its worth.

To do this, five examples with various degrees of stiff-

ness and/or stability are considered. All five have

roots as mathematical descriptions of some physical

process or another. To determine the worth of our in-

tegrators, we have compared them against two "com-
mercial benchmarks." The first is the explicit 4(5)

Runge-Kutta integrator of Fehlberg (1969). Here the

intention is to make comparisons for problems that

are not stiff. The second integrator is a 4(3) Rosen-

brock integrator (like ours), derived by Shampine

(1982) and advocated by Press et al. (1992) as the

integrator of choice for stiff systems that are not too

large (10 equations or fewer). These integrators were

compared as fairly as we could, from a code point of



view, and almost without exception our Rosenbrock
method was the superior integrator, even for prob-
lems that are not stiff.

The coefficients for the explicit and semi-implicit

integrators are derived in appendix A.

Please contact the first author in writing as to

the availability of software. The Windows/DOS,
Sun/UNIX, and Oberon/F platforms are supported.
Documentation is included.



Chapter 2

The Integrators

2.1 The Problem Statement:

Defining the Algorithm

Many physical processes (e.g., chemical kinetics and

inelastic material evolution) are represented by an

initial value problem (IVP) associated with the so-
lution of a set of ordinary differential equations

(ODE's) of first order, as described by

dx

d--_= f(t, x(t)) , (2.1)

or equivalently by

= f(t,x(t)),

with a boundary condition for the initial value pre-
scribed as

x(t0) = x0,

where x is a vector of M dependent scalar variables

{x 1 x 2 ... xM } v whose initial value at the time
t -- to is x0. Time is taken as the independent vari-

able for illustrative purposes. The overdot "'" is

used to denote differentiation with respect to time.

If f does not depend expIicitly on time t, the sys-

tem is said to be autonomous; otherwise, it is consid-

ered nonautonomous. The reader interested in study-

ing various methods for the numerical integration of
ODE's is referred to the excellent texts of Hairer et al.

(1991, 1993). We choose to present two fairly simple
methods in the following sections.

When constructing an algorithm for the numerical

integration of a differential equation, one must first

discretize the known ordinary differentiM equation

(ODE), which is defined at a point (e.g., tn), into an

ordinary difference equation (OAE), which is defined

over an interval (e.g., [tn, t_+l] where t,+l = t_ + h
with h being the size of the time step). We therefore

consider the following IVP, that is,

x +l = + (2.2)

with

Xn=0 -_- X0 ,

where t_+o is an intermediate point belonging to the

interval tn _< t_+e _< t_+l such that 0 _< 0 < 1. In

general, _" need not equal f, or equivalently, x. The

one-step OAE method presented in equation(2.2) is

often used in numerical integration algorithms to

represent the IVP of the first-order ODE given in

equation(2.1). The integrators presented in this pa-
per are constructed as weighted sums of one-step in-

tegrators. We adopt the notation that x,_ - x(tn),

x_+0 _ x(t_+0), where t,_+e = t,_+Oh with 0 < _ < 1

and x_+l - x(t,_+l).

2.1.1 Solution Interpolation

In the pursuit of acquiring a solution to a system

of differential equations over a time interval [t0,t],
two objectives are typically sought. First, a set of

times {to, t_, tb,..., t} is prescribed by the user,
such that for each element in this set the associated

solution vector is to be recorded, thereby resulting

in the set {x0, xa, xb, ..., x}. This prescription is

usually made so that the solution can be graphi-

cally displayed. Second, the integrator itself deter-

mines another set of times {to, tl, t2, ..., t_, ..., t}

whereby it advances the solution while maintaining a
prescribed level of accuracy. A difficulty arises in that

usually {to, ta, tb, ..., t} _ {to, tl, t2, ..., t}. From

the viewpoint of computational efficiency, it is ad-

vantageous to let the integrator propagate along the

solution via its optimum set {to, tl, t2, ..., t} and to
use interpolation, where necessary, to secure the so-

lution vectors {Xo, x_, xb, ..., x} at the prescribed
times {to, t_, tb, ..., t}.

Interpolation permits any ensemble of x's to be

recorded without impairing the efficiency of the inte-

grator by unnecessarily altering its time-step size. In

this report, we present integration formulae designed
for use with a specific form of local interpolation. It is

3



assumed that the solutionsxn and x,_+l,along with

theirslopesf,and f,_+1,are known to the same order

of accuracy (i.e.,to O(AP+I)) at the end of an ac-

cepted integrationstep.A cubic Hermite interpolant

for xn+e (0 < 6 < 1),which islocalto the interval

[t_,t_+1],isthen given by (Shampine 1985):

x,_+o = (1 - 6)x,, + 6x.+i

+ 6(1 - 6)((I - 20)(x,_ - x.+1)

+ (I - O)hf,_ - 6hf,_+l) (2.3)

+ O(h 4) + O(h p+I) .

The O(h 4) error belongs to the interpolation formula,

whereas the G(h P+I) error belongs to the integrator,

and hence, to the values x,, x,+l, f,, and fn+l. Con-

sequently, x,+e can be no more than third-order ac-

curate. Higher-order Hermite interpolation formulae

can be derived by using a formula given in Shampine

(1985) (see also Hairer et al., 1993, pp. 188-195).
Because values for both the function and its deriva-

tive on the right side of the time interval [t,_l,t,],
say, coincide exactly with those on the left side of

the next time interval [t,_,t,+l], Hermite interpola-

tion produces a global, continuous, and differentiable

approximation to the solution.

2.1.2 Time-Step Control

For the OAE integratorto be robust,itmust main-

tain some adaptive control over its own progress,

thereby making frequent changes to the sizeof its

time step asitadvances along the path ofitssolution.

The objectiveof automatic time-step controlisto

achieve a stablesolutionof predetermined accuracy

with minimal computational effort.To accomplish

this objective,the integrationalgorithm must com-

pute two approximations to the solution(viz.,x,+1

and X-+l, each with a differentorder of accuracy).

An errorestimate isthen constructedby takingtheir

difference(i.e.,x,+1 -x,+1) and ifsufficientlysmall,

advancing x,+1 (themore accurateofthe two results)

as the accepted approximation to the actualsolution

at that point. An estimate forthe errorcan then be

acquired from the relationship

En+l _ _ _"Z'_'-- -- ,= \ Xwei,ht(.+l))

where

Xwmeight(n+l) = faXr_ns e + f_l_+ll •

Here xnm+l is the rnth element, or dependent variable,

of the M elements belonging to the solution vector

Xn+ 1 at the n+l time step, with a similar explana-

tion applying to _÷1" The user should attempt to
specify rnXran_e > 0 for all m, which denotes an abso-
lute measure for the maximum range that each de-

pendent variable x TM is expected to vary over. These
scaling factors should ideally be set to within an order

of magnitude of expected values. If left unspecified,
they will be set to 1 by default in our software. The

fractions f. (0 < fa < 1) and f_ (f_ = 1-f,_) partition

the weighting factors x_ ...... between "absolute"
,, • ,, ezghtkn'i- _ )

and relatxve measures and are also user specified.

A default value of 1/2 has been assigned to both fs

and f_ if they are unspecified.

An effective, automatic, time-stepping routine for

numerical integration is given by (cf. Halter and Wan-

ner, 1991, pp. 31-35)

hnext

h

07 ]k e.+i ]

if e_+1 _< (max ,

(2.5)
r#4T/j

if (n+ 1 > (max ,

which, in the terminology of control theory, is

a proportional integral controller with antiwindup

(Gustafsson et al., 1988). Here em_ > 0 is the

maximum allowable error prescribed by the user

(e.g., E_n_x = 10-P); e_+1 is the error of the most
recent integration increment, as determined from

equation(2.4), with h being the size of its time step

and hnext the projected size for the ensuing time step;

(, is the error from the prior successful time step; and
p is the order of the integrator. The exponents of the

error ratios for a successful step have a denominator

of p+l, whereas the exponent of the error ratio for an

unsuccessful step has a denominator of p. The reason

is that the error of integration has, at least, exceeded

that of "x,+l for an unsuccessful step, which is taken

to be of order p- 1 in the methods presented herein,
and therefore has an error of order p.

The additional term ((n/emax) O'4/(p÷l) found in
this construct is the "proportional feedback" that

Gustafsson et al. (1988) added to the "control cir-

cuit" of this time stepper. This dampens the con-
troller, thereby increasing its stability. In effect, it

serves as a variable factor of safety. Therefore, an ex-

plicit factor of safety, which is common in many other

time-stepping algorithms (cf. Hairer et al., 1993, p.

168), is not present in Gustafsson's approach.

If e,+1 is larger than em_×, the value determined

for hnext will reflect a decrease in the step size after

we reject the present (failed) time step and retry the

integration with the new estimate hnext for h, which,

4



in the interest of algorithmic stability, is not permit-

ted to be less than groin times the size of the prior

attempt. If e_+l is smaller than emax, on the other

hand, the value determined for hnext will reflect a

possible increase in the step size to be app/ied to the

next integration step, which, in the interest of algo-

rithmic stability, is not permitted to be greater than

gmax times the size of the prior step. This procedure

is antiwindup. Shampine and Watts (1979) suggest

that _max and _min take on the values 5 and 1/10,

respectively. In our code, these parameters are user

definable with defaults as suggested by Shampine and
Watts.

A separate procedure should to he used to deter-
mine the initial time-step size at startup. The pro-

cedure imposed in our software begins by evaluating

f0 = f(t0, x0) at the initial point. We then consider
the norm

I 1_ 1 z m 2

where z is any vector with elements

{z 1 z 2 ... zM} T (in particular, z is either

x or f) and where _wmeight(0) = _aXrmnge "_- _r[X_n[, The
time-step size of

h0--[[xo[[E (2.7)
]If011,

is assigned as our first guess for the beginning step

size, such that h0 is bound by the user-defined in-

terval [hmi,,hm_]- If ]]x0H = 0, then h0 is set to
hmln. Typical values given to hmi n and hm_ might

be t/1000 and t/lO, respectively, where t is the to-
tal time of integration. A selection for these val-

ues is based on the user's knowledge of his/her given

problem.

A refined estimate for the initial time-step size is

obtained by performing one explicit, Euler, integra-

tion step (i.e., xl = xo + hof0) and then evaluating

t"1 = f(t0+h0,xl). Using the same norm as before,

we assign

h = 2 [[xl [[_-[[xo[I_ (2.8)Ilflll,+llfo}_

to be the starting step size, with hmin _< h <

hmax. This equation comes from the second-order

approximation [Ix1 I[, -- IlxoII,+ hill011,+ ½h2[(Ill1I1,-
[[f0l[,)/h], where I[folle _ (till [I,-[[f0lf,)/h. This pro-

cedure, or one similar to it, will usually give a good

estimate for the initial step size and thereby elimi-

nate potentially wasted computing time that could

otherwise be caused by poor initial estimates.

The methods of local interpolation, error estima-

tion, and time-step control that have been outlined

above apply to both the explicit and semi-implicit
Runge-Kutta formulm that follow. Collectively, they

constitute the integration algorithm employed in our

software. This algorithm is not too difficult to im-

plement, and it can give good results for a variety of

applications.

2.2 An Explicit Runge-Kutta

Integrator

The appropriate selection of an integrator depends

on one's application. Applications of interest to the

authors involve solving systems of first-order ODE's

that are coupled and extremely nonlinear. Under

these conditions, higher-order Runge-Kutta formulae
can actually be more costly to execute than lower-

order formulae. As a compromise between accu-

racy and efficiency, a five-stage, fourth-order, Runge-

Kutta integrator is considered.

Two approaches are used in securing the necessary

error needed to control the step size of Runge-Kutta

integrators. The first approach is step doubling (i.e.,

Richardson extrapolation) where each time step is in-

tegrated twice, once as a full step and then, indepen-

dently, as two half-steps. This approach is a popular

but expensive means for monitoring the error. The
preferred approach is embedded integration (i.e., a

Fehlberg method) where Runge-Kutta formulae of or-

der p have embedded in them another Runge-Kutta

integrator of order p-1, say. This method has not

been as popular as the first, but it is much more
efficient.

The following embedded Runge-Kutta integrator

was designed to permit local interpolation by us-

ing equation(2.3) in order to obtain any x_+0 found

within the interval [tn, t,_+l] for the purpose of secur-
ing dense output. This procedure allows for optimum

time stepping by, in effect, separating the process of

integration from the process of data collection.

Explicit Runge-Kutta methods are applicable to

situations where the system of ODE's is stable and

not stiff. By stable, we mean that the real part of

all eigenvalues belonging to the Jacobian are nega-

tive valued (i.e., _(A_) < 0 V i) and that the product
of the time-step size and the maximum eigenvalue is

bound (viz., hmax_ _([Ai]) < c, where c is a constant

whose value is usually of order 1). (It is actually in-

tegrator dependent.) This requirement implies that

the system has built-in dampening. By nonstitt, we

mean that the real part in the ratio of the maximum

to minimum eigenvalues of the Jacobian is of order



1(i.e.,maxi_([Ai{)/mini_({_,j{)= O(1)).Nonstiff-
nessimpliesthattherate of change in each dependent
variable is roughly the same.

On the topic of stiffness, Shampine and Watts

(1979) state that explicit "Runge-Kutta methods are
not suitable for a problem which is very stiff, al-

though tests show that among methods for nonstiff

problems, they are likely to be the best in the pres-

ence of mild stiffness." A method more appropriate

for stiff integration is presented in the next section.

The explicit Runge-Kutta integrator developed in

appendix A is of the Fehlberg (1969) type and is de-
scribed by the formulae

4 /x,,+1 = x. + h + O(h5)

i=o (2.9)
4

Xn+l -_- X,_ ÷ h _--_,k, + O(h4)/
i=o )

with an error estimate of

I 1M m._'_1M [ _]4=°(ci - _i)k_n ] 2

where k_ is the ruth element of derivative vector

k,----{k1 ki2 ... kM} T. These Runge-Kutta
derivatives are evaluated as

i--1

k_ = f(t,_ +a_h, x. +h _ aokj) ,
j=o (2.11)

given the FSAL constraints

ko(_+1)= f(t_,xn) - k4(,)3 l

,(t.+,,x.+,) _;(.+,, ] (2.12)

and therefore c4 --- 0 in equation(2.9).

As a result of the constraints implied in

equation(2.12), the number of derivative evaluations

is reduced from p+l (5) to p (4) for each success-

ful time step, because k0(,+l) - k4(,0, and therefore
f,_ -- k4(n). This property is characteristic of FSAL
integrators. At startup, k0 must be explicitly eval-

uated. (Actually, it is precalculated in the startup

procedure defined by equations(2.7) and (2.8).)
The solution is advanced at the completion of a

successful step by assigning x(t, +h) ¢= x_+l and

f(t,_+l,X,+l) _= f,_+l = k4(.+l),where x(t,_) #= x.

and f(t,, x,) _= fn ----k4(_) were assigned in the prior
step.

TABLE 2.1: COEFFICIENTS OF KUTTA'S CLASSIC IN-

TEGRATOR WITH FIFTH-STAGE ADDED TO PRODUCE

EMBEDDED 4(3) RUNGE-KUTTA INTEGRATOR

i

0

1

2

3

4

ai

0 0

1/2 1/2 0

1/2 0 1/2
1 0 0

1 1/6 1/3

i c_

o 1/6
1 1/3
2 1/3

3 1/6
4 0

a_

0

1 0

1/3 1/6 0

1/6 0

1/3 0
1/3 0

0 1/6
1/6 -1/6

Efficiency of integration comes from the fact that

the functions k0, kl, ..., 1_, which are the unknowns,
are the same for both formula x,_+l and formula

x,+l, which are of orders p and p-1, respectively.

What distinguishes X_+l from _,+1 are their respec-

tive sets of known coefficients (i.e., {c0,cl,...,c_}
and {_0,_,... ,_}). This distinction is why embed-

ded Runge-Kutta methods (i.e., Fehlberg methods)

are so efficient. Such a set of coefficients for a 4(3)-

order integrator belonging to the class of integrators

described by equations(2.9) to (2.12) is given in table

2.1. The first number in the pair p(p-1) represents the
order of the base solution x, with the second brack-

eted number giving the order of the embedded solu-

tion R. The derivation of the coefficients presented

in this table is given in appendix A.

The base integrator for x (i.e., stages 0 to 3

presented in table 2.1) is the classic Runge-Kutta

method originally derived by Kutta (1901, p. 443).
His integrator has a maximum truncation error of

1/80 at a fourth order of accuracy (cf. Fehlberg,
1969). The coefficients _ belonging to the embed-

ded solution R were obtained by using equation(4.9)
of Hairer et al. (1993, p. 167). The embedded inte-

grator has a maximum truncation error of 1/72 at a
p- 1 (third) order of accuracy.

2.3 A Semi-Implicit Runge-

Kutta Integrator

The explicit Runge-Kutta method presented in the

previous section works well for the numerical inte-

gration of systems of first-order ODEs that are not

stiff, that are not unstable, or whose Jacobians are

6



notsingular.However,whenstiffness,instability,or
Jacobiansingularitybecomean issue,formulaelike
thesemi-implicitRunge-Kuttamethodthat wenow
presentshouldbeusedinstead.

A systemofODE'sisunstableif therealpartofat
leastoneeigenvaluebelongingto theJacobianispos-
itive (i.e.,N(>,i)> 0for oneorsomei). The system
is said to be singular if at least one eigenvalue is zero

valued (i.e., the determinant of the Jacobian is singu-

lar). Stiffness has to do with the ratio of eigenvalues

and therefore requires at least two differential equa-

tions. Stiffness does not have a universally accepted

definition. As we use the term, a system is stiff if

maxi _(IXil)/miny _(IAj)) >> 1, with the value of 100

representing a "fuzzy boundary" between not being

stiff and being stiff. Stiffness implies that one depen-

dent variable evolves rapidly while another evolves

slowly.

Rosenbrock (1963) proposed a class of Runge-

Kutta integrators that are semi-implicit and there-

fore of potential use for stiff integration. Wolfbrandt
(1977) modified Rosenbrock's method, resulting in

a more efficient means for its computation. Using

the order conditions derived by Wolfbrandt (see also,

Kaps and Wanner, 1981), we have constructed an em-

bedded, semi-implicit, Runge-Kutta integrator (i.e.,

a Rosenbrock method) of order 4 that contains the ex-

plicit Runge-Kutta integrator of table 2.1 as a subset.

Therefore, a software implementation can transition

easily and systematically from the semi-implicit inte-

grator to its explicit form, or vice versa, at any point
in the integration where the system of ODE's either

leaves or enters, respectively, a domain of stiffness.

The semi-implicit Runge-Kutta integrator consid-

ered is described by the formulae

Xn+l = X, + h E c/ki + O(h _
i=0

4

--x.÷hE ,k, +o(h )J,_-0
(2.13)

with an error estimate of

= M L
ra=l weight(n+l) (2.14)

What distinguishes this semi-implicit integrator from
the prior explicit one is the calculation of the Runge-

Kutta derivatives, which are evaluated by

i--1

ki=f(t,+a,h,x,+hEaqkj)
j=O

Y

explicit part

i

Of, . af_ (2.15)
+ hb,-5- + h b,jk,

j=0

semi-implicit part

Equations (2.13) and (2.14) are identical to their re-

spective explicit counterparts given in equations(2.9)

and (2.10). Equations (2.11) and (2.15), however,
are significantly different. The expression for the ac-

tual derivative (i.e., f) found in the relation for k/

given in equation(2.15) has the same form as that

which is found in equation(2.11). It is the Jacobian,

0f,/0x, and the nonautonomous gradient, cgf_/at,

that provide the additional contributions to a Rosen-

brock integrator.
Notice that 0f_/0x and 0f_/0t are both evalu-

ated at the beginning of the time step and are there-

fore evaluated explicitly---only once per time step.

For this reason, Rosenbrock integration has been re-

ported not to produce good results if approximate nu-

merical evaluations are used to acquire Of,/Ox and

Ofn/Ot (Shampine, 1982). Analytic derivatives are

preferred to ensure good quality results from Rosen-

brock integrators. Approximate numerical evalua-
tions are less desirable, in part, because the Jacobian

belongs to the integrator; whereas in other implicit

integration algorithms, such as backward Euler, the

Jacobian does not belong to the integrator but rather

to the solver (viz., Newton-Raphson iteration). Nu-
merically acquired Jacobians also cost more to eval-

uate than analytic Jacobians.

For convenience of implementation, Kaps and Ren-

trop (1979) and Kaps et al. (1985) have successfully
used finite differences to construct the Jacobian in-

stead of analytic derivation. In their 1985 paper they
write the following: "It should be noted that this

has two disadvantages: First, the numerical compu-

tation needs more computing time than an analytic

version, because n function evaluations are necessary
for one numerical Jacobian. Second, the order condi-

tions were derived under the assumption of an exact

Jacobian. If the truncation or rounding errors in the

numerical computation of the Jacobian are not neg-

ligible the method may lose its order. However, this
effect was seen in our computation only for very sen-

sitive problems."

Insisting on "analytic" evaluations for the deriva-

tives is sometimes perceived as being a shortcom-



TABLE

BROCK

2.2: COEFFICIENTS OF OUR 4(3) ROSEN-

METHOD (b = 1/4)

i ai

0 0

1 1/2

2 1/2
3 1

4 1

b_

i/4
0

-1/8
0

0

0

i/2 0
0 1/2 0
0 0 1 0

1/6 1/3 1/3 1/6 0

1/4

-1/4 1/4

1/4 -5/8 1/4
1/2 -3/4 0 1/4

0 -1 1 -1/4 1/4

, c_ _ c_-_
0 i/6 1/6 0
1 1/3 i/3 0
2 1/3 i/3 0
3 i/6 0 1/6
4 0 1/6 -1/6

ing of Rosenbrock methods, but if adhered to, the

added effort required to derive a Jacobian is greatly

rewarded by the enhanced computational efficiency

that it brings to these integrators. Symbolic mathe-

matical packages make securing an analytic Jacobian

not as taxing as it once was.

Rosenbrock's (1963) original formulae require an

"explicit" Jacobian to be evaluated for each stage

of integration, resulting in a semi-implicit method.
Like implicit methods, semi-implicit methods require

the solution of a linear system of equations; how-

ever, unlike implicit methods, they do not require

the added burden of iteration to accomplish the task

of solving the system. Wolfbrandt (1978, p. 90) gen-
eralized Rosenbrock's method by considering a fully

populated lower-triangular matrix of coefficients for

the bO, as indicated in equation(2.15). In addition,
by constraining the diagonal terms to all be equal

(i.e., bii = b V i), thereby utilizing a single explicit
Jacobian, Wolfbrandt substantially streamlined the

method, since now only one matrix inversion is re-

quired for each integration step instead of the p+l sep-

arate matrix inversions originally proposed by Rosen-

brock. The constants of our 4(3) Rosenbrock inte-

grator are given in table 2.2. Their motivation and

derivation are provided in appendix A.

The number of function evaluations (viz., f) reduce

from p+l (5) to p (4) for each successful time step

of this FSAL integrator. The reason is that f_ is
contained within k0, whereas f,_+l is contained within

k4 and can therefore be reused in evaluating k0 in the

next step. These are alsothe derivatives found in the

formula for local interpolation given in equation(2.3).

The base integrator for x given in table 2.2 has a

maximum truncation error of 1/60 at a fourth order

of accuracy, whereas the embedded integrator for

has a maximum truncation error of 1/48 at a third

order of accuracy. These errors are slightly larger

than, yet comparable to, the truncation errors of the

explicit Runge-Kutta integrator given in table 2.1.

2.3.1 Code Implementation

A direct implementation of equations(2.13) to (2.15)

requires, at each stage, the solution of a linear sys-

tem of equations by using the matrix [_I - hl],

where J = (0f,/Ox) is the Jacobian. In addi-

tion, it also requires the matrix-vector multiplica-
i--i

tion h(Of,/Ox)"_j=0 bokj, which fortunately can be
avoided by introducing a change in variable (Hairer

and Wanner, 1991, pp. 120-121), that is,

i

sci=Ebok j, i=0,1,...,4.
j=0 (2.16 /

This change leads to a more efficient implementa-

tion of Rosenbrock methods by removing the Jaco-

bian from the right-hand side of the system being

solved (Wolfbrandt, 1978, pp. 106-107). Because

b_ = b _ 0 V i, the matrix bO has an inverse b_ 1.
Consequently, the k_ can be recovered from the t¢_

by the relation

i i--1
1

k,= _ b__j - _ _,- _ _,j_j,
j=o jffio (2.17)

where

J30=diag[_ _--. _]-b_ 1

is a lower-triangular matrix with zeros along the main

diagonal.

Inserting the transformation of equation(2.17) into

the Rosenbrock method of equations(2.13) and (2.15)

and scaling the latter by dividing through by h lead

to a more efficient implementation by the formulae

4x,,+l -- x,, + h _ x_ + O(h s)
i=0

4

X.+l = Xn Jr" h E£=0 _'i_' + O(h41J

(2.18)
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witherrorestimate

= M .:i J (2.19)

where _ is the ruth element of the transform vector
2 . _M}T. These Runge-Kutta-like..

derivatives are evaluated by solving, at each stage,

the linear system

(-_I- h _-_--f_)-i

i--I

= f(t +A
j:o (2.20)

Of. 4-1
+hb_- + E_qtcJ'

j=O

wherein the above equations employ the following

changes in variables:

4

°_iJ = E a_kbk-j 1

k:0

4

j=0

4

j=0

The coefficients associated with the aij, b_j, ci, and _i
of table 2.2 are given in table 2.3 for this streamlined

implementation of our Rosenbrock method.

Equation (2.20) is a linear system of equations hav-
ing the form A- x_ = b,, whose solutions, x_ = A -1.

b_, require a single matrix inversion A -1 applied to

the multiple right-hand vectors b0, bl,... ,bp. Each

right-hand vector can only be evaluated when its

predecessors are known (e.g., solving for b2 requires

knowledge of both x0 and Xl). The method of lower-

upper (LU) factorization is ideally suited for solving
linear systems with multiple right-hand sides.

For a given step size h, the matrix A : _I - hJ
is a constant matrix, since the Jacobian J is evalu-

ated at the beginning of the currently solved step by

using the last converged solution. Matrix J may be
singular or ill conditioned due to stiffness, with very
extreme values for its norm. Whatever its condition

is, as long as the whole matrix [_I - hJ] is not sin-
gular, the LU decomposition procedure can take care

of these difficulties by appropriately scaling the ma-

trix through a full pivoting process. The only feature
that must be ensured is the existence of the inverse

TABLE 2.3: COEFFICIENTS USED IN IMPLEMENTA-

TION OF OUR 4(3) ROSENBROCK METHOD

001 12

2 1/2
3 1

4 I

b_

1/4
0

-V8
0

0

i

0

I

2

3
4

aq
0

2 0

2 2 0

6 10 4 0

14/3 20/3 4/3 2/3 0

Xi

14/3

20/3

4/3
2/3

0

0

-4 0

-6 -10 0

-4 -12 0 0

4 12 16 -4 0

_ X,-_

10/3 4/3
s/3 4

-4/3 8/3

2/3 0

2/3 -2/3

[1I -- hJ] -1, in which case a unique solution vector

is ensured. Whenever the coefficient matrix happens

to be singular, this condition can easily be corrected
by altering the step size h.

The solution tci is plugged into the right-hand side

vector of equation(2.20). As the coefficient matrix

is constant, this vector essentially controls the solu-

tion process. Therefore, monitoring its behavior can

detect stiffness or ill conditioning of the system.

2.3.2 Stiffness Detection

Whenever a nonstiff integrator encounters stiffness,

the product of its step size with the dominant eigen-

value of the Jacobian will typically lie near the

boundary of its stability domain. To avoid wasting
too much effort when encountering stiffness with a

nonstiff integrator or, in the opposite situation, to

avoid wasting too much effort when accuracy (rather

than stability) controls the time-step size in a stiff

integrator, it is important that a code be equipped

with a cheap means of detecting stiffness so that it
can switch, whenever appropriate, between the two

integrators.

A stiffness-checking algorithm that is both rigor-

ous and inexpensive does not exist, to the best of

our knowledge, for determining when to transition

from a nonstiff to a stiff integrator. Instead, in our

implementation, we use a simple rule of thumb. If
the time-step size has been reduced three times with-



out successfully advancing the solution when using

the explicit integrator, the Jacobian is evaluated and
the method of integration switches over to the semi-

implicit algorithm. A more mathematically pleasing

criterion exists for detecting when to switch from a

stiff to a nonstiff integrator.

To estimate directly the dominant eigenvalue, say

,kM(n), of the Jacobian Jn = 0fn/0x from the nth

time step, let vi M) denote an approximation to

its corresponding eigenvector such that IIv_M)ll2 <<

I]Xn I]2, where the [1"112is the standard L2 vector norm.

Then, by the mean value theorem,

llf(tn, xn +vi M)) - f(t,, xn)[{2

I_M(.)I = live-M) II_ (2.22)

will provide a good approximation to this leading

eigenvalue (Hairer and Wanner, 1991, pp. 23-24).

Because the Jacobian is explicit, this determination

for the principal eigenvalue is also explicit in the sense

that AM(n) is associated with the beginning of the in-

terval [tn, in+l]. The calculation of )_M(n) will, in ac-
tuality, take place at the end of the previous time step

over the interval [tn-l,tn]. The result of this evalu-

ation determines if the current interval [tn, t,+l] will

be integrated with the Fehlberg method of table 2.1
or with the Rosenbrock method of table 2.2.

Because we have set a3 = a4 -- I, a natural choice

in evaluating equation(2.22) for the Rosenbrock inte-
grator described in table 2.2 is to take

II1_ - ksll2

IAM(.+I)I = llx.+1 - (x. + hk2)l12 ' (2.23)

or equivalently, to consider

611k4- k_ll2
h.÷l I_M(.+I)I = Ilko + 2kl - 4k2 + k3112'

TABLE 2.4: INVERSE OF bij GIVEN IN TABLE 2.2

i bi._1
0 4 0 0 0 0
1 4 4 0 0 0

2 6 10 4 0 0

3 4 12 0 4 0
4 -4 -12 -16 4 4

where k4 = f(t.+l, x.+l) and k3 = f(tn+l, xn+h k2),
with xn+l - (x_ + hk2) providing a good approxi-

mation to the eigenvector ..(M) corresponding to the--n+l

dominant eigenvalue AM(n+1) , such that one obtains
IlXn-}-I -- (Xn ÷ hk2)ll2 << IlXn+lll2. In the case of

a Wolfbrandt-modified R.osenbrock integrator, one

must transform the _i back to the k_ by the rela-
i --1

tion ki = _j=0bij _j (eq. (2.17)), where the matrix

coefficients b_ 1 pertaining to table 2.2 are given in
table 2.4.

After an integration over the time increment

[tn-1, tn] has been determined to be successful while

using the Rosenbrock integrator, but before ad-

vancing to the next time step, our code evaluates

hn+x IAM(n)h wherein hn+l is the next time step hnext
coming from equation(2.5), which is proposed for the

next time increment [tn,t_+l]. A decision is made
a_cording to

switch to Runge-Kutta

integration for [t., tn+l],

continue with Rosenbrock

integration for [tn, tn+l].

10



Chapter 3

Numerical Examples

In this chapter, a few examples are presented to verify

our numerical method and to compare it with other,

well-known, Runge-Kutta integrators. To this end,

a variety of examples have been chosen from several

scientific fields. Despite their different realms, all the

examples have one common denominator: they are
mathematically defined by a system of first-order,

nonlinear, differential equations that present, to vary-

ing degrees, regional stiffness or instability.
Three Runge-Kutta-based integrators were used in

the comparisons:

1. Fehlberg's (1969) 4(5) explicit algorithm. For
ease of writing, it is abbreviated hereafter to

EFA (explicit Fehlberg algorithm). This is a
"commercial" Runge-Kutta integrator.

2. Semi-implicit Rosenbrock (1963) formulation

with Shampine's (1982) 4(3) coefficients and an

adjusting step-size scheme proposed by Kaps

and Rentrop (1979). The whole package is re-

ferred to as SKA (Shampine-Kaps algorithm).
This integrator is advocated by Press et al.

(1992) for solving stiff ODE's.

3. Semi-impBcit Rosenbrock (1963) scheme with

the coefficients given in table 2.3 and the step-

ping procedure proposed by Gustafsson et al.

(1988), equation(2.5). This algorithm is abbre-

viated FGA (Freed-Gustafsson algorithm).

The numerical features presented by the examples

are the accuracy of the results, the total number of

steps required for integration, and the residual error

obtained during the solution process.
The first example was taken from the field of chem-

ical kinetics (Hairer et al., 1993, pp. 115-116) and

yields a two-dimensional periodic solution known as

the Brusselator (i.e., it has a single attractor). The

Brusselator, defined by an unstable and stiff (coeffi-

cient dependent) set of equations, served as the initial

test case for verifying the derivation and implemen-

tation of our algorithm and for testing its internal

interpolation scheme (eq. (2.3)), which transfers the

solution from the algorithmic time stepper to an out-

put time sequence required by the user.

In the second example, the two semi-implicit inte-

grators were applied to Lorenz's (1963) classical chaos

problem, which originated from simulating weather

patterns in forecasting (see also Hairer et al., 1993,

pp. 120-125). The result was a three-dimensional
chaotic solution with two "strange attractors." The

main characteristic here is the not quite periodic na-

ture of the solution, leading to an eventual loss of

determinism, hence, chaos. Unlike the first example,

this system is defined by a nonstiff set of equations,
and therefore its numerical solution is primarily an

accuracy-driven process.

In the third example, the integration algorithms
must deal with a 3 x 3 system of differential equa-
tions where one ODE is a linear combination of the

other two ODE's and hence the system is singular.

Its solution is asymptotic, rather than being periodic

like the prior two examples. This system is test case

D4 of Enright and Pryce (1987). Like the Brussela-

tot, its origin is in chemical kinetics.

The fourth example is a viscoplastic material

model (a material that has characteristics of both a

plastic solid and a viscous fluid) developed by Robin-

son (1978)--a 13-degree-of-freedom system of ODE's.
The intent is to describe behavior of metal struc-

tures operating at elevated temperatures. Like the
prior example, the solution is asymptotic, provided

that the direction of loading does not change. When

change occurs, the solution goes through a transient

on its way to a different asymptote. These tran-
sient domains are not stiff and therefore are accuracy

driven. However, in the neighborhood of an asymp-

totic response the system becomes quite stiff, and

consequently solutions are stability driven. An ex-

clusive feature of this particular example is the pres-

ence of a step function in the evolution equations--
"a source of numerical difficulties that must be dealt

with" (Robinson and Swindeman, 1982).
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Ourfinalexampleisa four-degree-of-freedomsys-
tem(i.e.,testcaseF1 of EnrightandPryce(1987),
whichtheystatealsohasits sourcein chemicalki-
netics). This systemis stablebut extremely stiff

(the stiffest in their library of IVP's), which is why

it makes a good test case.

3.1 The Brusselator

In this first example, a set of equations defines a

chemical evolution process known as the Brussela-
tor. A more detailed discussion of its physical as-

pects is given in Halter et al. (1993, pp. 115-116). In
essence, this system of differential equations describes

reactions involving several chemical substances. The

more substances, the larger the system, in general.
The cause of the Brusselator's numerical difficulties

is directly related to the relative speed by which the

concentrations of these chemicals change. The main

features of the Brusselator include an unstable sys-
tem and the existence of a limit cycle for the process.

The Brusselator describes the chemistry of six sub-

stances whose evolution through time is characterized

by a stiff system of two differential equations in two
unknowns, namely,

Yl = A + y2y2 - (B + 1)yl

y2 By1 - y y2 / (3.1)

with a steady state at y = {A B/A} T, where A

and B are positive constants. The eigenvalues at this

state are given by

A=_I|-(IFL - B + A 2)+ _/(I- B +A2) 2 -4A2[lj

Obviously, for B > 1 + A 2 the system is unstable. It

exhibits "a limit cycle which, by numerical calcula-

tions, is seen to be unique" (Hairer et al., 1993, p.

116). To confirm this statement by using the FGA

integrator, a few analyses were performed with A = 1
and B = 3 while changing the initial conditions. The

final time was set at 20 sec, and the global tolerance

for accuracy of integration was placed at 1 x 10 -4.

The results are shown in figure3.1. Indeed, all so-

lutions, regardless of the starting point, converge to

one limit cycle. The only difference is the number

of steps that it takes for them to get there. For the

initial condition of Yl = 1.5 and Y2 -- 3, our analysis

matches that of Hairer et al., with the exception that

the integrators are different.

The solution and residual error, given as functions

of time, are plotted in figure3.2. Comparing the re-

4.0

3.0

Y2

2.0

1.0

0.0 _ .1,.1 [3,01
0.0 1.0 2.0 3.0 4.0 5.0

Yl

Figure 3.1: Chemical reaction: the limit cycle pre-

dicted by the Brusselator, as acquired by the semi-

implicit integrator FGA.

sults of this figure with those reported in the litera-
ture, we conclude that FGA provides accurate num-

bers with an error equal to or smaller than the pre-
assigned tolerance. The analysis took 106 steps, re-

jecting 20 during the process. For the sake of com-

parison, the total number of steps required for the

explicit integrator EFA was 842, while for the semi-

implicit integrator SKA it was 2250, all at the same
prescribed error tolerance and initial condition.

The interpolating routine provided values (labeled

discrete print) on the continuous curve (fig. 3.2(a))
at the very points that were defined in the input file.

Therefore, the time stepping of the algorithm is to-

tally independent of the required output.

As a preface to our second example, a small per-

turbation was imposed on the initial conditions; the

analysis was re-performed for three slightly different

initial conditions (viz., {1.5 2.9} T, {1.5 3.0} T, and
{1.5 3.1}T), and the final time was extended to 100

sec. The results are plotted in figure3.3. Despite

the perturbations and the extreme time length of the
analysis, after a transient period all solutions con-

verged to the unperturbed solution--further indica-

tion that the limit cycle is unique.

After convincing ourselves of the correctness of our

algorithm, we then approached the stiffness issue. By

making B much bigger than A, thereby increasing the

12
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Figure 3.2: Chemical reaction: variations in chemical

concentration (a) and residual error (b) obtained by

semi-implicit integrator FGA in solution of Brussela-
tor.

Figure 3.3: Chemical reaction: variation in chemi-
cal concentration of Brusselator for perturbed initial

conditions obtained by FGA at short (a) and long (b)
times.
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ratio of the eigenvalues, a much stiffer set of equa-
tions ensues. For this test, A was kept as before and

B was increased to 100, for which case the resulting

eigenvalue ratio becomes IAmaxl/IAmlnl = 9593. The

solutions, which are now asymptotic rather than pe-

riodic, are shown in figures3.4 and 3.5. As may be
verified, for the same accuracy FGA proceeded with

larger steps than SKA, especially within the stiff re-
gion. The total number of steps needed for FGA and

SKA were 20 and 89, respectively. The explicit al-

gorithm (i.e., EFA) required 14 823 steps to success-

fully complete the process! This result demonstrates

clearly the advantage of using stiff integrators for stiff

problems.

3.2 The Lorenz Chaos Problem

The following discussion deals with the now famous

set of hydrodynamic equations developed by Lorenz

(1963) for simulating, as simply as possible, the com-

plex behavior of Earth's weather. Lorenz's set of ordi-
nary differential equations has been analyzed in some

detail by Hairer et al. (1993, pp. 120-125). We do
not delve into the mathematical rigors of chaos the-

ory; rather, we reproduce Lorenz's results by using

the FGA algorithm and compare its numerical fea-

tures with those of similar integrators.

The most significant feature of this problem is the

nonperiodic behavior of its solution. It should be

emphasized that the solution is continuous with con-

tinuous derivatives, unique, and bounded. Even so,

although it is periodic, it never repeats its own his-

tory exactly. Its determinism is a transient property

that disappears as time goes by. This set of differ-
ential equations serves as a contrast example to the

Brusselator, and therefore it is a good second test

case for our study.

Like the Brusselator, analyses were performed for

both short and long times, with perturbed initial con-

ditions, and for different global tolerances. This pro-

cedure was intended to distinguish between problem

characteristics on the one hand and algorithmic be-

havior on the other. The set of mathematical equa-

tions given by Lorenz (1963) is as follows:

= -aX + aY

_" = -XZ + rX- Yi '
2 = XY - bZ

(3.2)

where a, r, and b are related to the flow parameters,

X is proportional to the intensity of convective mo-

tion, Y is proportional to the temperature difference

between ascending and descending currents, and Z is

Yl

101

10°

10"1

10.2

I I ' I '

(a) [O _ FGA

, I , I , I ,
0.025 0.050 0.075 0.100

Time

......... SKA N

Yl 10.1

10_

10"3

_v v

I , I , I ,
6 11 16 21

Time

Figure 3.4: Chemical reaction: variation of Yl under

stiff conditions for short (a) and long (b) times where
A-- 1 and B = 100.
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proportional to a distortion in the vertical tempera-

ture profile from linearity. Similar signs in X and Y

imply that warm air is rising and cool air is falling. A
positive value of Z indicates that the strongest tem-

perature gradients occur near the boundaries--the

base of a thunderhead, for example, and the Earth.

There are three steady states: {0 0 0} T,

which is unstable for values of r > 1, and

{X = Y = :kv_(r - 1), Z = r - 1} T, which are un-
stable for values of a > (b- 1) and of r > r= with

re = a(a +b+ 3)/(a-b-1). These inequalities follow

from the characteristic equation

A3 + (a + b+ 1)A 2 + (r + a)bA + 2ab(r- 1) --- 0

which produces three constant eigenvalues. The flow

parameters were chosen, as cited in the references, to

be given by

1. a = 10, b = 8/3, and r = 28 > re, in which case

rc = 24.45, leading to the steady-state points

{-8.48 -8.48 27}rand {8.48 8.48 27} T

2. Initial conditions of {0 1 27} T and

{-8 8 27} T

3. A final (normalized) time of 5, extended to 100

For these values of a, b, and r, one eigenvalue turns
out to be real while the other two are complex, both

having positive real components, and therefore the
system is unstable. The ratio of their magnitudes is

approximately 1.2:1, which does not indicate any stiff
behavior.

The first analysis was performed with a shorter

range of time. The three state planes are plotted

in figure3.6. The FGA produced the same solution

obtained by Lorenz, Hairer et al., and many others.
The solution crossed the state planes several times

as it circumnavigated the steady-state points, as ex-

pected. For the two different initial conditions, the

solution followed two different trajectories with differ-

ent ending points. From the numerical point of view,

FGA required 208 steps, SKA required 13 905 steps,

and EFA experienced unrestrained error growth.

The magnitude of the residual errors for FGA and
SKA are plotted in figure3.7. In this case, SKA ended

up with better accuracy than was initially required.

The reason is the much smaller step size mandated by

the algorithm. On the other hand, for FGA the step

size was about right to meet the external tolerance.
The next set of numerical tests dealt with small

perturbations in one coordinate of the initial value.

In the application of systems of differential equations,

such perturbations may represent inaccuracies in lab-

oratory measurements, which are inevitable phenom-

ena. To this end, the analyses were performed for
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Figure 3.6: Lorenz chaos problem: X-Y, X-Z, and
Y-Z spaces, solved for two different initial condi-

tions. Tolerance, 1 x 10-4; final time, 5.
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Figure 3.7: Lorenz chaos problem: residual errors

obtained for two Rosenbrock algorithms.

three initialconditions: {1 0 3.9}T,{1 0 4.0} T,
and {1 0 4.1} T. In addition, the final time was in-

creased to 100. As can be seen in figures3.8 and 3.9,
the final state was totally different for each of the

three cases, even though the initial point was per-

turbed in one component by only 2.5%. This agrees

with Lorenz's conclusion: for a chaotic system, any
deterministic prediction is accurate only in the near

future. Even the slightest differences in the start-

ing point result in vastly different states when pre-
dicted far into the future. This is the reason why the

weather forecast on your evening news typically goes
out to only five days, with a decrease in reliability

the further out one goes in the forecast.

The last test run on this problem involved chang-

ing the error tolerance and observing the behavior of

the algorithm itself. Being a nonstiff type of prob-

lem, the appropriate step size is accuracy driven. In

other words, the question asked here is, How sen-
sitive are chaotic phenomena to the error tolerance

of our integrator? All numerical integrators have a
sensitivity in this respect; it is in the extent of the

effect that they differ. Said differently, truncation er-

ror is one source leading to a loss in determinism in a

chaotic system of equations; perturbed initial condi-

tions are another source. Any numerical analysis in

chaos should distinguish between these two sources if

accurate near-future predictions are to be made.
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1 × 10-4; final time, 100.

Figure 3.9: Lorenz chaos problem: solutions in X-
Y space for perturbed initial conditions. Tolerance,

1 × 10-4; final time, 100.
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Figure3.10showsthe control of the externally ap-

plied tolerances over the performance of the FGA nu-
merical scheme. The residual errors did not exceed

the imposed limits. The upper error bound depended

on the externally enforced values for both short and

long time intervals.

Because different tolerances produce different time

steps, it is difficult to say with certainty how sim-

ilar or dissimilar the numerical solutions really are.

Nevertheless, figure3.11 shows these differences to be
quite small, at least in the near future. However,

the variance is not always this small. As time grows,
so does the difference between solutions calculated

with different error tolerances. Even so, this inte-

grator seems to be less sensitive to error tolerance

than other integrators we have used. By the time of

100, the errors due to variations in the truncation er-

ror have not yet produced solutions that have signif-

icantly branched away from one another. This is not
the case for small variations in the initial conditions.

3.3 A Singular System

In the following example, the integrators were applied
to solve an a priori singular system. These equations

were taken from Enright and Pryce (1987, case D4)

(see also Press et al., 1992, p. 734) and are given by

Yl = --0.013yl-- lO00ylY3 "]

_/2 : --2500_2Y3 IY3 = -0.013Vl - lO00vlYs - 2500y2y3 (3,3)

As can be easily seen, the last equation is the sum of

the first two, which means that the system is singular

and therefore has an eigenvalue of zero. For this sys-

tem, the steady state is calculated to be Yl = Y2 - 0

V y3, with the remaining two eigenvalues being posi-

tive whenever Ys < 0, leading to instability.

The analysis parameters were chosen exactly as
in Press et al.; namely, the initial conditions were

set to Yl -- 1, Y2 ---- 1, and Y3 = 0, and the final

time was set to 50. The analyses were performed

for two global tolerances (viz., 10 -4 and 10 -3) by

the two semi-implicit Runge-Kutta integrators (i.e.,

FGA and SKA). The solutions acquired for the three

components, Yl, Y2, and Y3, are plotted in figure3.12.

Both algorithms provided solutions within the re-

quired global tolerance. The major differences lie in
the numerical features of each method.

When using the tighter global tolerance (i.e.,
10-4), FGA ran to completion using 19 steps; the

SKA algorithm needed 86 steps. In contrast, the ex-

plicit integrator EFA oscillated about the initial con-
dition until the analysis was artificially stopped. The

u_

I0"_

10 .2

I0 -3

10 "4

10 .5

-- Residual error

, I , I , I , I ,
0 1 2 3 4 5

Time

10 "_

10"2

O
*_ 10"3

Time

Figure 3.10: Lorenz chaos problem: residual errors of

FGA for various global tolerances over short (a) and

long (b) time intervals.
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Figure 3.11: Lorenz chaos problem: solutions in X-Z

space for various global tolerances. Initial condition,

{-8 8 27)1; final time, 5.

Figure 3.12: Singular system: solutions obtained by

semi-implicit Runge-Kutta methods.
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-7.5

residual errors for the two semi-implicit algorithms

are shown in figure3.13. Despite the reduced step

size in SKA, its error was greater by a few orders of
magnitude than that of the FGA integrator, xl0"_

2.5
Upon imposing the second global tolerance (i.e.,

10-3), the number of steps required by SKA was re-

duced to 34, but the accuracy of the solution deterio-

rated as well. The results for this analysis are plotted 0.0
in figure3.14. When applying the FGA using this tol-

erance, the number of steps was reduced by 2, to 17, ;_

with no apparent differences between the solutions.
The final consideration given to this example was ._ -2.5

monitoring the Jacobian norm, plus investigating its

influence upon the performance of the algorithms. Up r_
to this point, all the analyses were performed without

restraining the norm [[Jl] at all. In this case, with a -5.0

tolerance of 10 -4 imposed, FGA completed its anal-

ysis in 19 steps, with the Jacobian norm ranging be-

tween 0.846275 and 795 500, as shown in fignre3.15.

SKA required 80 steps with its norm, in this case, -7.5

varying from of 0.846275 to 6691. Both algorithms
provided accurate results despite the extreme values
of their coefficient matrices.

In contrast, when the norm of the Jacobian was

limited to have a maximum value of 10, the total

number of steps for FGA went up to almost 40 000.

In all the cases, as long as the matrix [I-bhJ] was not

singular, these semi-implicit algorithms converged,

(a) i i

n -- Global tol.=10 "3

/, _ Global tol.=10 "4

0 10 20 30

I

i I ,

40 50

Time

I I t I J
(b)

-i

---i

[:__Olo  tol.:lo-31m Global tol.=10 4
-4

I I I I I I I I I

10 20 30 40 50

Time

Figure 3.14: Singular system: Y3 component for two

global tolerances. (a) SKA. (b) FGA.
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Figure 3.15: Singular system: variations in norms of
Jacobian for FGA and SKA methods.

and as fast as their norms allowed them to. It there-

fore seems best not to interfere with the Jacobian at

all.

3.4 Viscoplasticity

Viscoplastic constitutive equations describe the rate-

dependent response of metals at high temperatures.

They usually incorporate two competing mechanisms

(viz., hardening and recovery processes) that are in
balance with each other upon reaching a steady state.

The models were mathematically defined by using the

same type of equations as employed in the previous
examples. One characteristic of viscoplasticity is that

the eigenvalues are nonnegative and strongly state de-

pendent (Arnold, 1990). The result is a stable system
with regional stiffness.

The material model used in the current study was

developed by Robinson. Details of the formulation
may be found in Robinson (1978) and Robinson and

Swindeman (1982) and are summarized in appendix

B. In addition to the typical regional stiffness of vis-

coplastic models, this model includes a step function
to simulate abrupt changes in the internal state be-

havior, which are observed to occur in the dislocation

network at load reversals. This step function makes

the model especially attractive from the numerical

point of view, in the sense that it is a challenging

test case for study.

In essence, a viscoplastic model contains three

types of equation: (1) Hooke's law defining the re-

lationship between stress (load) and strain (displace-

ment) (i.e., the input-output pair); (2) a flow equa-
tion defining the kinetics of inelastic deformation--

the primary source of nonlinearity; and (3) an evolu-
tion equation quantifying a change in internal state,

in this case, a back stress resulting from the hetero-

geneous distribution of dislocations.

For the current implementation, these equations

have been rearranged such that

1. First, a deviatoric system is solved for two in-

dependent state variables, specifically, the effec-

tive stresses and back stresses denoted as _, A E

_x_, which are symmetric (i.e., [*] = [.it) and

deviatoric (i.e., I : [.] = 0).

2. Then, the reversible, isotropic, hydrostatic com-

ponent Hua,.o is added in the calculation of
Cauchy's (applied) stress: er = _ + A + Hud,.oI.

The final system of equations has the matrix form

"Jr -- ,

O O

where [Mij] E _3x3. The exact formulation is de-

tailed in appendix B.

For the following analyses, the total strain E was

taken to be the externally enforced function and was

considered to be cyclic (cf. fig. 3.16). The error toler-
ance was set to the usual value of 10 -4. The material

constants were taken directly from Robinson's refer-

ences. Both explicit and implicit solvers were used
to obtain predicted material behaviors. All three in-

tegrators provided the correct solution, within the

preassigned tolerance. To achieve this, FGA needed

185 steps, SKA needed 5573 steps, and EFA needed

79 726 steps. Figure 3.17 shows the variation of step

size throughout the whole cycle, as obtained from

the FGA integrator. The areas where point den-

sity is high are indicative of stiff zones, regions of
strong nonlinearity, or locations dominated by the

step functions.

The regions marked A and B in figure3.17 are the

locations where the step function is active. Because of

the short duration of its application and the abrupt

change that it causes, the step size is significantly

reduced by all algorithms when they encounter this
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step function, which is numerically simulated by a

spline function. Region B of figure3.17 is blown up in

figure3.18 to illustrate this phenomenon, as obtained

by FGA. The other two algorithms had to proceed

with much smaller steps through this region to end
up with the same solution accuracy.

Figure 3.19(a) shows the step-size variation
through the knee of the curve in the first quadrant of

state space for both semi-implicit algorithms. Here

the solution is accuracy driven rather than stabil-

ity driven; in other words, here the solution is not

stiff. Our integrator, unlike most stiff integrators,

is efficient for nonstiff problems, too. In contrast,

figure 3.19(b) shows step-size variation in the region

where stability drives the solution and accuracy has
little significance. After reaching a Cauchy stress of

nearly 20 ksi, the load was removed and consequently

the Cauchy (applied) stress fell off. The step sizes

were small during unloading, especially for SKA. The

problem was at maximum stiffness in the region of

maximum Cauchy stress. Stiffness did not dimin-

ish much until the applied stress dropped below the

level of the internal stress. As concluded by Arnold

(1990), this region is susceptible to numerical stiffness

and therefore is a worthwhile location for comparing
algorithms.

The last feature that we investigated in this exam-
ple was the effect due to variation in the Jacobian.

Stepfunction regions

12.5

E
"_ 0.0

-12.5

-25.0
-0.4 -0.2 0.0 0.2 0.4x10 "2

Total strain

Figure 3.17: Robinson's viscoplastic material: vari-

ous state spaces for variables.
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Figure 3.18: Robinson's viscoplastic material: State

response through region (B) where step function is

applied.

As mentioned by Shampine (1980), Lambert (1991,
pp. 251-254), and many others, the Jacobian dom-

inates implicit algorithms and is a crucial factor in

obtaining the correct solution. Therefore, the Jaco-

bian norm (viz., [[J[[1 d_fmaxi(_j [Jij[)) was moni-
tored in both the FGA and SKA algorithms. Their

outputs are plotted in figure3.20.

Figure 3.20(a) shows variations in the Jacobian
norm obtained from FGA for different prescribed
maxima of the Jacobian. The absolute value of the

Cauchy stress is plotted in the background as an aid

in visually identifying the stiff and nonstiff regions.

Analyzing this plot, it can be seen that the extremes
occurred near the steady states. The flatter the stress

(output)-versus-time curve, the greater the value of
the Jacobian. The maximum occurs in the third

quadrant of state space, with IlJII = 16.7. The lesser

peaks in these Jacobian time plots are identified with

the step function becoming active.

When an upper bound was imposed on the Ja-

cobian norm beyond which the step size must be

reduced, the previously mentioned peaks became

chopped off and the norm was maintained constant

until the solution left that particular stiff region. Nat-

uraJly, bounding the norm affected the number of in-

tegration steps. The lower the bound, the greater the

number of steps. Without any user interference (un-
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Figure 3.19: Robinson's viscoplastic material: varia-

tions of step size for FGA and SKA in (a) transient

nonstiff region and (b) stiff region near steady state.
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bounded), the number of steps for the whole cycle

was 185 for FGA. When the norm of the Jacobian

was constrained to be no greater tha_'l 5, 3, 2, mad 1,

the number of steps for the FGA integrator increased

to 211, 248, 303, and 487, respectively.

Figure 3.20(b) shows a comparison between SKA

and FGA. For SKA, with unbounded magnitudes

of the norm, the Jacobian norm was almost al-

ways smaller than the FGA norm, even at its low-

est clipped value (investigated) of 1. The maximum

value over the entire cycle was [[d[[ --- 3.5 for the SKA

algorithm, and it happened during an active period

of the step function. Peaks are apparent in the stiff

regions as well, but their values are smaller relative

to those of FGA, especially when it was not clipped.

The solutions acquired in the stiff regions, obtained

both with and without constraining the Jacobiart, are

plotted in figures3.21 to 3.23 for the various phase

planes. Limiting the Jacobian is seen to have had

almost no effect on the accuracy of the results, which

agrees with a conclusion obtained from the prior ex-

ample. The maximum relative error observed be-

tween the solution without bounding the Jacobimi

and the one obtained with max(lIdll ) = 1 was 1%.
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Figure 3.20: Robinson's viscoplastic material: vari-

ation of IiJlI1 for (a) FGA and (b) both FGA and

SKA.

3.5 Stiff Chemical Kinetics

In our final example, we return to the field of chemi-

cal kinetics, as the related problems axe known to be

among the most difficult to deal with from the numer-

ical point of view. The following example is test case

F1 in Enright and Pryce (1987). No details are pro-

vided concerning the physical interpretation; never-

theless, the given system exhibits extremely stiff be-

havior. Therefore, it was intriguing for us to examine

the performance of the two semi-implicit algorithms.

To more accurately single out the differences be-

tween these two integrators, time-step control of the

SKA algorithm was switched over to that of Gustafs-

son, thereby putting them on a more equal footing for

comparison purposes. That is, Shampine's parame-

ters (Shampine, 1982) were combined with Gustafs-

son's error routine (Gustafsson et al., 1988) to create

a solver, which is abbreviated as SGA.

The pertinent equations for this chemical kinetics

problem are

U1 ---- 1.3(y3 -Yl) + 10400 k Y2]

95 = lss0iy4 - y2(1 + k)] /Y3 = 1752 - 269ys + 267y1

_/4 -- 0.1 + 320y2 - 321y4

(3.5)
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Figure 3.21: Robinson's viscoplastic material: exter-

nal stress versus time at first reversal (a) and at end

(b) of loading history.

Figure 3.22: Robinson's viscoplastic material: inter-

nal stress versus time at first reversal (a) and at end

(b) of loading history.
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Figure 3.23: Robinson's viscoplastic material: plastic

strain versus time at first reversal (a) and at end (b)
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with the parameter

k = exp(20.7 - 1500/yl).

The final £nalysis time was set to 1000, with the ini-

tial condition set to y = {761 0 600 0.1} T. The

Jacobian is described by the matrix

-1.3 10400 1.3 0 ]

o  880/-1880y2 vl
267 0 -269

0 320 0 -321J

Solving the resulting fourth-order characteristic

equation IJ- AII = 0 leads to the four negative

eigenvalues {-2.56 x 1011 -321 -271 -.0096),

with a resulting eigenvalue ratio on the order of

IA,_l/lA,_inl _ 1013. Obviously, this system is sta-

ble and extremely stiff.

The four components of the solution are plotted

against time in figures3.24 and 3.25. The results

provided by both algorithms are accurate, as long as

components Yl, Y3, and Y4 are considered. The con-

verged solutions of both solvers follow the same pat-
terns. Unlike all previous examples, the total num-

bers of integration steps for both formulations were

about the same; specifically, SGA converged after 170

steps and FGA after 117. There is, however, a large

discrepancy in the initial time-step size used by the

two algorithms: SGA began with a step size of about
10-s; FGA began at about 10 -l°.

Consistency between predictions obtained by

FGA and SKA was different for the variable Y2-

Shampine's formulation provided what we believe to

be the more reasonable solution. His algorithm pre-

dicts a change at the beginning of the analysis and

then an asymptotic approach to zero. The prediction

from our algorithm, albeit near zero, was negative---a
fact that makes no physical sense if one considers the

yi to be measures of chemical concentration. Again,

because we do not know the physics behind this sys-

tem of equations, this is speculation on our part.

Apparently, the FGA results accumulated an ini-

tial overshoot error that did not clear itself through-

out the whole analysis. The resulting Y2 obtained

small but negative values, which triggered our sus-

picion and led to the conclusion that, for this ex-

treme stiffness, Shampine's parameters seem to work

better--probably because his integrator is A-stable

(stiffly stable) while ours is not. Also, both integra-

tors are stable at infinity--his being damped while

ours is not. In other words, Shampine's integrator

has better stability properties than does ours, and

this shows up in the presence of extreme stiffness.
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Figure 3.24: Chemical kinetics: semi-implicit algo-

rithms with Gustafsson's error analysis for yl and

Y2.

Figure 3.25: Chemical kinetics: semi-implicit algo-

rithms with Gustafsson's error analysis for Y3 and

Ya.
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An important constraintin the overallsolution

process is that number of significantfiguresat

which an analysisis done. Roughly speaking, the

eigenvaiueratiofor the stiffnessof any nonsingular

problem should not approach or exceed the number

of significantfiguresused in an implementation.

For thisproblem, the eigenvalueratiowas _ 1013 and

FORTRAN double-precisionvariableswere used. We

believethat ifhigher-orderprecisionwould have been

used, both algorithmswould have produced the same

answer. In other words, we believethat it is the

numerical precisionused, not the integratoritself,

which determines that upper bound instiffnessratio

that can be safelyhandled by a stableRosenbrock-

Wolbrandt method.
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Chapter 4

Summary

A Rosenbrock (1963) integrator of the Wolfbrandt

(1978) type has been derived. This development took

"the" classic Runge-Kutta integrator of Kutta (1901)

and extended it to a Rosenbrock-Wolfbrandt integra-

tor for the numerical integration of stiff systems. A
fifth stage was added to produce a third-order embed-

ded solution for estimating the error. The result is

a semi-implicit 4(3)-order integrator appropriate for

systems of ODE's that are stiff, unstable, or singu-

lar. It even performs competitively for well-behaved

systems where explicit Runge-Kutta integrators have
been the usual method of choice.

The capabilities of our integrator are probably best

summarized in tabular form (viz., table 4.1). This
table presents the number of steps required to suc-

cessfully integrate to specified error tolerances for

each of the five systems of ODE's investigated. Com-

pared are the explicit 4(5) Fehlberg (1969) integrator

(EFA), which is used in many commercial codes; the

Rosenbrock integrator (SKA) of Shampine (1982'),

which is advocated by Press et al. (1992) for inte-

grating stiff systems that are not excessively large in
number (say, M < 10) and whose error tolerance is

not too stringent (e > 10-6); and the Rosenbrock

integrator (FGA) derived herein.
Shampine's integrator, as reported in Press et al.,

uses the time-step controller of Kaps and Rentrop

(1979); our integrator uses the time-step controller of

Gustafsson et al. (1988). To eliminate discrepancies
caused by the time-stepping algorithm, Shampine's

integrator was linked with both controllers. The

number of steps required for successful integration us-

ing the time stepper of Kaps and Rentrop has the col-

umn heading K.Err; results obtained using the time

stepper of Gustafsson et ai. have the heacling G.Err.

Looking at table 4.1, it is readily apparent that the

Gustafsson et al. time stepper is superior to that of

Kaps and Rentrop.

A fairer comparison now exists between SKA (us-

ing G.Err) and FGA. In all cases, except for the
chemical kinetics problem of extreme stiffness, the

FGA algorithm was superior to all others, includ-

ing the Fehlberg integrator in the case of the nonstiff
Brusselator.

Shampine (1985) made the following statement:
"At present, codes are clearly intended for stiff or

nonstiff problems, but not both. Deciding the type of

the problem is an impossible task for a user. This au-
thor considers the question of how to relieve the user

of this decision to be the most pressing question in
the area of ODE mathematical software." The FGA

integration algorithm is a possible solution to this

problem. Unlike other nonstiff integrators, this algo-

rithm seems to be efficient for stiff and nonstiff prob-

lems alike. Its good nonstiff properties likely come
from the fact that FGA extends a proven integrator of

Kutta (1901), thereby retaining the good quadrature

properties of that integrator. Although we cannot

give analytic justification, we believe our integrator

is better because it has better quadrature. Prior de-

velopments of Rosenbrock integrators have neglected

quadrature in their attempts to obtain optimum sta-

bility and/or truncation errors or to minimize func-
tion evaluations. It is not that these considerations

are invalid; rather, it is that engineering an efficient

and robust integrator requires making compromises

between order of accuracy, stability, truncation er-

rors, and quadrature.
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TABLE 4.1: TOTAL NUMBER OF STEPS REQUIRED BY RUNGE-KUTTA AND ROSENBROCK-WOLFBRANDT

METHODS

Example Stiffness Integrators

ratio, Tolerance, EFA SKA

0(_) 10-" G.Err" I K.Err

Brusselator

(unstable)

Lorenz

chaos

(unstable)

Enright's

D-4 problem

(singular)

Viscoplastic

model

(stable)

Chemical

kinetics

(stable)

o(101)

(9(104)

o(101)

OO

o(1o5)

0(lO13)

FGA

5 1487 12 206 22 460 175

4 842 1344 2 250 106

3 483 211 234 66

5 52207 3359 6854 35

4 26533 416 707 26
3 14823 96 89 20

5 (b) 60908 138919 346

4 (b) 6418 13905 208

3 (b) 864 1401 130

5 (b) 358 648 22

4 (b) 80 86 19

3 (b) 42 ¢ 34 c 17

5 89186 17848 54970 287

4 79726 2108 5573 185

3 39906 427 635 134

5 (b) 605 1 131 115 c

4 (b) 170 162 116 c

3 (b) 88 60 95c

a Warning: More than 40 step reductions were needed to achieve

the required tolerance in most solutions.

b Unrestrained error growth.
c Inaccurate results.
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Appendix A

Derivation of Coefficients

A.1 Explicit Integrator

The first objective in the overall scheme of developing

our Rosenbrock integrator was to add a fifth stage to

Kutta's (1901), classic, fourth-order, explicit integra-

tor. This addition was done so that a third-order em-

bedded integrator of the Fehlberg (1969) type could

be constructed for use in error estimation• No third-

order integrator is embedded in a four-stage Runge-

Kutta integrator; hence, the need for adding a fifth

stage (Hairer et al., 1993, p. 167). A fifth-order error

estimate would require two additional stages instead

of just the one required by a third-order estimate•

The order conditions of Butcher (1963) for a

fourth-order Runge-Kutta integrator in 4 stages com-

prise a set of 11 equations in 13 unknowns• Given the

three constraint equations

a 1 = alo |

a2 =a20+a21 /a3 = a30 + a31 + a32

(A.1)

Butcher's set of eight order conditions is given by

1=cO+Cl+C2+C3

1
= Clal Jr c2a2 -F c3a3

3

1
g = c2a21a 1 + c3(a32a2 + a31al)

¼=_1_+ e2_ + _3_
± = c_a2l_ + _(_ + _1
12

1
g = c2a2a21al + c3a3(a32a2 + a31a1)

1
2"_ _ c3a32_21al

(A.2)

The unknowns are the ai, aij, and ci, which are the

parameters appearing in the R.unge-Kutta formulae of

equations(2.9) and (2•11). The coefficients of Kutta

(1901) displayed in table 2.1 represent one of many

admissible solutions to this underconstrained system

of equations. Kutta's formulae are the foundation of

our integrator. From here on, these coefficients are

considered fixed.

To ensure that the integrator retains fourth-order

accuracy after a fifth stage has been added, one must

consider the extended set of order conditions

1 =Co -'_C 1 -_-C 2 --_C 3 +C 4

1
= Clal -I- c2a2 + c3a3 + c4a 4

3

1
g = c2a21al + c3(a32a2 + a31al)

+ c4(a43a3 + a42a2 + a4]al)

4

± = e_ + _(_ + _)12

+ c,(_,3_ + _,2_ + _,_)
1
g = c2a2a21al + c3a3(as2a2 + a31al)

+ c4aa(a43a3 + aa2a2 + a41al)

4 = c3a32a21al

+ _,(_ (_ + _ _) + _,_ _)

The first two of these equations imply second-order

accuracy, the second set of two equations implies

third-order accuracy, and the last four equations im-

ply fourth-order accuracy, as in equation(A.2). Be-

cause Kutta's original integrator is to be contained

within this solution, one obtains the constraints

(A.4)

and

a2= 0 + 1

03= 0 +0 +1

a4 = a40 + a41 -4- a42 Jr a43

(A.5)

Furthermore, requiring a4j = cj V j, indicating an

FSAL integrator, implies that f,,+l = k4, which

is needed by equation(2.3) for local interpolation.
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FSAL integrators permit the assignment of f. _ f.+l

in the next integration step, instead of calculating f.

directly, thereby eliminating one function evaluation

per time step. As it turns out, any set of finite num-

bers for the a4j satisfies the above equations because
c4 = 0, which is a coefficient to all terms containing

the a4j.
The order conditions for a third-order Runge-

Kutta integrator in five stages, which is to be used in

error analysis, are given by the following four equa-

tions in five unknowns (the at and aij are assumed
known); in particular,

½= %aI+ _,a_+ _3a3+_,a4|

_=_la_+_24+_3a_+_4_ "
= _,a2_a,+_3(_3_a,+_,,a_)| (A.6)
+ _4(a43a3+ a42a2+ a41a,))

where the_-are the unknowns, ofwhich _ # ciforat

leastone i inorder that the embedded integratorbe

differentfrom the actualintegrator.The quadrature

of integration remains the same as Kutta's solution

if one simply swaps c3 = 1/6 with c4 = 0 such that

_3 = 0 and _4 = 1/6, with all other _ being equal

to their c_ counterparts. This swapping is admissible

(cf. Hairer et al., 1993, p. 167). Yhrthermore, for this
to be third order, the fourth-order order conditions

must be violated with this set of constants, which

they are. These violated equations are precisely the

truncation errors of the embedded integrator.

A.2 Semi-Implicit Integrator

Considering the constraint equations

al = alo ]

as----a20Wa21

a3 = a30 "4- a31 + a32

a4 ---- a40 "{- a41 T a42 -}- a43

and

(A7)

bo=b )

bi = blo + b

b2 = b20 + b2z + b (A.8)

b3 ----b30 + b31 "+-b32 + b

b4 = b40 + b41 + b42 + b43 + b

along with the definitions

g_j = a_j + b_j ]
i--1

9,= _(a,j+b,j)=_,+b,-b ' (A.9)
1=0

the order conditions of Wolfbrandt (1978, pp. 96-100)

for a fourth-order, modified, Rosenbrock integrator

in five stages are therefore given by (cf. NCrsett and

Wolfbrandt, 1979, and Hairer and Wanner, 1991, pp.
110-119)

A = co --FCl -.I- c2 -.I- c3 --{- c4

B = Clgl -I- c2g 2 -4- c3g 3 Jr c4g 4

c = c14 + _i + c_a_+ c,a_
D = c2g21gl + c3(gz292 + g3191)

+ C4(g4393 + g4292 + 94191)

E cza_ +c2a_ 3 3= + c3a 3 + c4a 4

F = c2g_a_+ c3(g3_4+ g3_a_)
+ c,(_3a_ + _a:: + _la_)

G = c2a2a2zgl + c3a3(as292 -4- aSlgl)

+ c4a4(a4393 + a4292 + a4191)

H = c3g32921gl

+ c4(g4_(gz2g_+ _31g_)+ _4_191)

wherein

[(A.10)

A=I

B - 2b)=½(1
1

C=_

D = }(1 - 6_+ 6__)
1

E=I

F = _(1 -4b)
c = _(3 - 8_)
H_-- 1_(1 - 12b + 36b 2 - 24b 3)

(A.11)

Any set of a_, a_j, b, b_, b,j, and c_ that satisfies these
equations is an admissible Rosenbrock integrator.

An assignment of b = 1/4 places b outside the re-

gion [0.39434, 1.28057] for an A-stable, fourth-order,

Rosenbrock integrator of the Wolfbrandt type in four

stages (Kaps and Rentrop, 1979), which applies to
our solution x. Nevertheless, it is contained in the

middle region of [0.10567, 0.10727] U [0.20385, 0.25] U
[0.39434, oo), which are the domains of stability at

infinity. Because b is located on one of these bound-

aries, it is stable but not dampened at infinity. An

advantage in choosing a small value for b is that, in

general, the smaller its value, the smaller the error

constant will be (Kaps and Wanner, 1981).

Because the Rosenbrock integrator being derived

is to explicitly contain the Runge-Kutta integrator of

the prior section, it follows that the a_, a_, and c_
are known a priori, and only the b_ and b_3 remain

as unknowns, resulting in a system of 10 equations

in 15 unknowns. The constraint equations therefore
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become

bo='_

bl -- bl0 + ¼

b2 b20 + b21 + ¼

63 b30 + b31% b32 -I- 41- (A.12)

b4 b40 + 641 4- b42 + b43 +

and the order conditions reduce to the set

-1 = 8bl + 8b2 + 4b3 ]

/_!2 = (1 + 2b21 + b31)(1 + 4bl)

+ (1 + b32)(1 + 4b2) _.

--2 = 2b21 + b31 + 632 / (A.13)
!

-1 = 4bl + 8b2 [
!

_!4 = (1 + 532)(1 4. 2521)(1 4. 4bl)J

The first of these five order conditions is equiva-

_-,_=o c_bi = 0, so thatlent to the requirement that 4

"integrated" contributions from the nonautonomous

gradients vanish (i.e., h_'_=oc, b_0f,_/0t ---- 0) and

cannot therefore affect adversely the stability of the
solution.

As it turns out, one can express the coefficients bl0,

b20, b21, b30, b31, and b32 all in terms of bl, which is

useful; specifically,

b10 = (-14.4bl) / 4

b20 = (1 + 661 - 8b_) / 4(1 4. 4bl)

621 = -(5 4. 28bl) / 8(1 4. 4bl)

630= (1 - 261- 86 ) / 2(1+ 461)

531 ----(--3 + 851 + 144bl2)

+ 4(1 + 451)(1 + 1251)

b32 = -12bl / (1 + 1251)

(A.14)

where it is apparent that bl _ -1/12 and bl _ -1/4.
The simplest set of rational numbers that one can

obtain is obviously acquired by taking bl = 0, which
is what we did.

All that is left is one equation in five unknowns; it
is

b4 =b4o4.b41 4.b424.b43+ ¼ •
(A.15)

Certainly, a unique solution does not exist.

Constraints are sought from the four order condi-

tions for a third-order Rosenbrock integrator in five

stages to be used for error analysis; they are

B = _dlgl + _292 + _3g3 + _4g,_

c = + + +
D = _2921gl 4- _3(932g2 4, g31gl)

-4-_4(g4393 4" g4292 4- 94191)

(A.16)

With all variables fixed except those in
equation(A.15), the first and third equations in

equation(A.16) are satisfied identically. From the

second equation comes the requirement that b4 = 0.

Therefore, one obtains the following two equations
in four unknowns:

-Z = b40 4. b41 4. b42 4. b43

--5 4641 "4-2b42 q- 12643 J (A.17)

Seeking simplicity, we chose the set of coefficients pre-

sented in table 2.2. They have the intuitive property

that the two contributions at the quadrature points

a = 1/2 and a = 1 cancel one another out.
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Appendix B

Robinson's Viscoplastic Model

The system of differential equations that govern vis-

coplasticity, as derived by Robinson and Swindeman

(1982), is given by

(_=De'-@-_'-I(fF) ]

p(x)(F) '_
|

r. l
2_KTv_2 [, (B.1)

• g ._t /tG('_-_) _/
A _- _., _

GO *J KTV_2 J

where er denotes Cauchy stress, EI denotes inelas-

tic strain, and A denotes an internal or back stress.

Quantities used to describe the parameters in these

equations include

S = a- (½I : a)I _ = S- A

= ½(r.: = :½(A A)

where S is the stress deviator.

The step function introduced by Robinson (1978)

was later represented by Robinson and Swindeman

(1982) with the spline function

0 ifx <-1

(1+ x)2/2 if-1 < x < 0
p(x) = 1 - (1 - z)2/2 if 0 < x < 1

1 ifx>l

whose argument is given by

(S:A)/w2 inGx= (S E)/wl in_l.

The scalar-valued state functions are given by

G'={ Gi/4G o f°r Gb ->2G°-I-G 0 for G < 2G °

with

Kv

and by

a(I_) = (C' - C°)p(x) + C °

0 if v_2/KT -- 1 < 0
F(J2) = V/'_2/K - 1

if V"_2/KT - 1 > O.

B.1 Material Constants

The material constants for a 2-¼ wt% chromium-
1 wt% molybdenum steel given in Robinson and

Swindeman (1982) are

Reference temperature To = 1000

Young's modulus E = 22 480
Poisson's ratio v = 0.334

Thermal coefficient _ = 0.1 x 10 -5

Drag strength g T = 0.82

Yield exponent n = 4
Flow factor r = 3.61 x 10 _

Recovery power m = 7.73

Hardening power /3 = 1.5
Recovery coefficient R = 9 × 10 -8

Hardening coefficient H = 1.37 × 10 -4
Back stress threshold Go = 0.1

Step function range wl -- 1

Step function range w2 = 1

The temperature-dependent parameters are

= rexp[(23.8T - 2635)(1/T0 - l/T)]

/_ = n exp [40 000(l/T0 - l/T)]

The elastic moduli are isotropic, that is,

E Ev

2(v + 1) (1 - 2v)(1 + v)
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withstiffnessmatrixDetof

A+ 2v -2v -2v 0 0 0
-2v A+ 2v -2v 0 0 0
-2v 0 A+ 2u 0 0 0
0 0 0 2v 0 0
0 0 0 0 2u 0
0 0 0 0 0 2v

whenexpressedinVoigtnotation.

B.2 Code Implementation

The governing system of differential equations given

in equation(B.1) can be consolidated into two, ten-

sor, differential equations and a scalar function eval-

uation; in particular,

2rH

A = -b-z-d_ _-dA A

= -C_ D ez- Z--&+D el. [_- 1(I:/_)I]R
O

and

wherein

Hydro = (3A + 2v) (I: e) - 3alb
3

C_= p(_)(F)" CA = k G_-_

B.2.1 The Jacobian

The Jacobian iscomposed ofa 2 x 2 matrix with each

element being a fourth-ordertensor.

Its components are defined according to

which themselves contain the derivatives

OZ, = 2"_-_ O]E

oc= <F=) ov(_:) ox
OA 2_v_2 Ox OA

OVA CA(m-Z) OC
O_ G O_

oO_A= CA(._- Z)Oa C_
OA c OA 2v_2

wherein

and

0
O_.xx) 1 +z1-x

0

ifx < -1

if-l<x<0

if0<x<l

ifx>l

m

0E

0A

(A + 2_3)/wl
A/w2

Y,/wl
(_, + 2A)/w2
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